PCM (pulse code modulation) is a

digital scheme for transmitting

analog data. The signals in PCM are binary; that is, there are only two possible states, represented by logic 1 (high) and logic 0 (low). This is true no matter how complex the analog waveform happens to be. Using PCM, it is possible to digitize all forms of analog data, including full-motion video, voices, music, telemetry, and virtual reality (VR).

To obtain PCM from an analog waveform at the source (transmitter end) of a communications circuit, the analog signal amplitude is sampled (measured) at regular time intervals. The sampling rate, or number of samples per second, is several times the maximum frequency of the analog waveform in cycles per second or

hertz. The instantaneous amplitude of the analog signal at each sampling is rounded off to the nearest of several specific, predetermined levels. This process is called quantization. The number of levels is always a power of 2 -- for example, 8, 16, 32, or 64. These numbers can be represented by three, four, five, or six binary digits (bits) respectively. The output of a pulse code modulator is thus a series of binary numbers, each represented by some power of 2 bits.

At the destination (receiver end) of the communications circuit, a pulse code demodulator converts the binary numbers back into pulses having the same quantum levels as those in the modulator. These pulses are further processed to restore the original analog waveform.